Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Article in English | MEDLINE | ID: covidwho-20243551

ABSTRACT

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Subject(s)
Congenital Disorders of Glycosylation , Liver Transplantation , Phosphotransferases (Phosphomutases) , Female , Humans , Child, Preschool , Glycosylation , Follow-Up Studies , Phosphotransferases (Phosphomutases)/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Liver/metabolism , Immunoglobulin G
2.
Nutrients ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: covidwho-20243208

ABSTRACT

Childhood obesity is a global public health problem. Worldwide, 41 million children under 5 years and 340 million children and adolescents between 5 and 19 years are overweight. In addition, the recent COVID-19 epidemic has further amplified this social phenomenon. Obesity is a condition associated with various comorbidities, such as nonalcoholic fatty liver disease (NAFLD). The pathophysiology of NAFLD in obesity is intricate and involves the interaction and dysregulation of several mechanisms, such as insulin resistance, cytokine signaling, and alteration of the gut microbiota. NAFLD is defined as the presence of hepatic steatosis in more than 5% of hepatocytes, evaluated by histological analysis. It can evolve from hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma, and end-stage liver failure. Body weight reduction through lifestyle modification remains the first-line intervention for the management of pediatric NAFLD. Indeed, studies suggest that diets low in fat and sugar and conversely rich in dietary fibers promote the improvement of metabolic parameters. This review aims to evaluate the existing relationship between obesity and NAFLD in the pediatric population and to assess the dietary patterns and nutritional supplementations that can be recommended to prevent and manage obesity and its comorbidities.


Subject(s)
COVID-19 , End Stage Liver Disease , Non-alcoholic Fatty Liver Disease , Pediatric Obesity , Adolescent , Child , Humans , Child, Preschool , Non-alcoholic Fatty Liver Disease/metabolism , Overweight/metabolism , Pediatric Obesity/metabolism , COVID-19/metabolism , Diet , Fibrosis , End Stage Liver Disease/pathology , Liver/metabolism
3.
Int J Environ Res Public Health ; 20(7)2023 03 28.
Article in English | MEDLINE | ID: covidwho-2294006

ABSTRACT

The long-term laboratory aspects of the effects of coronavirus disease 2019 (COVID-19) on liver function are still not well understood. Therefore, this study aimed to evaluate the hepatic clinical laboratory profile of patients with up to 20 months of long-term COVID-19. A total of 243 patients of both sexes aged 18 years or older admitted during the acute phase of COVID-19 were included in this study. Liver function analysis was performed. Changes were identified in the mean levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and ferritin. A ferritin level of >300 U/L was observed in the group that presented more changes in liver function markers (ALT, AST, and GGT). Age ≥ 60 years, male sex, AST level > 25 U/L, and GGT level ≥ 50 or 32 U/L were associated with an ALT level > 29 U/L. A correlation was found between ALT and AST, LDH, GGT, and ferritin. Our findings suggest that ALT and AST levels may be elevated in patients with long-term COVID-19, especially in those hospitalised during the acute phase. In addition, an ALT level > 29 U/L was associated with changes in the levels of other markers of liver injury, such as LDH, GGT, and ferritin.


Subject(s)
COVID-19 , Female , Humans , Male , COVID-19/epidemiology , Cross-Sectional Studies , Liver/metabolism , Liver Function Tests , gamma-Glutamyltransferase , Ferritins , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism
4.
J Pharm Sci ; 112(5): 1401-1410, 2023 05.
Article in English | MEDLINE | ID: covidwho-2242056

ABSTRACT

Delivery of messenger RNA (mRNA) using lipid nanoparticles (LNPs) is expected to be applied to various diseases following the successful clinical use of the mRNA COVID-19 vaccines. This study aimed to evaluate the effect of the cholesterol molar percentage of mRNA-LNPs on protein expression in hepatocellular carcinoma-derived cells and in the liver after intramuscular or subcutaneous administration of mRNA-LNPs in mice. For mRNA-LNPs with cholesterol molar percentages reduced to 10 mol% and 20 mol%, we formulated neutral charge particles with a diameter of approximately 100 nm and polydispersity index (PDI) <0.25. After the intramuscular or subcutaneous administration of mRNA-LNPs with different cholesterol molar percentages in mice, protein expression in the liver decreased as the cholesterol molar percentage in mRNA-LNPs decreased from 40 mol% to 20 mol% and 10 mol%, suggesting that reducing the cholesterol molar percentage in mRNA-LNPs decreases protein expression in the liver. Furthermore, in HepG2 cells, protein expression decreased as cholesterol in mRNA-LNPs was reduced by 40 mol%, 20 mol%, and 10 mol%. These results suggest that the downregulated expression of mRNA-LNPs with low cholesterol content in the liver involves degradation in systemic circulating blood and decreased protein expression after hepatocyte distribution.


Subject(s)
COVID-19 , Nanoparticles , Mice , Humans , Animals , COVID-19 Vaccines , RNA, Messenger/genetics , RNA, Messenger/metabolism , Liposomes/metabolism , Liver/metabolism , Cholesterol/metabolism , RNA, Small Interfering/genetics
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2216329

ABSTRACT

The autophagy gene ATG7 has been shown to be essential for the induction of autophagy, a process that used to be suppressed in nonalcoholic fatty liver disease (NAFLD). However, the specific role of ATG7 in NAFLD remains unclear. The aim of this study was to analyze hepatic ATG7 mRNA and ATG7 protein expression regarding obesity-associated NAFLD. Patients included women classified into normal weight (NW, n = 6) and morbid obesity (MO, n = 72). The second group was subclassified into normal liver (NL, n = 11), simple steatosis (SS, n= 29), and nonalcoholic steatohepatitis (NASH, n = 32). mRNA expression was analyzed by RT-qPCR and protein expression was evaluated by Western blotting. Our results showed that NASH patients presented higher ATG7 mRNA and ATG7 protein levels. ATG7 mRNA expression was increased in NASH compared with SS, while ATG7 protein abundance was enhanced in NASH compared with NL. ATG7 mRNA correlated negatively with the expression of some hepatic lipid metabolism-related genes and positively with endocannabinoid receptors, adiponectin hepatic expression, and omentin levels. These results suggest that ATG7-mediated autophagy may play an important role in the pathogenesis of NAFLD, especially in NASH, perhaps playing a possible protective role. However, this is a preliminary study that needs to be further studied.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Female , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Liver/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism
6.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index , COVID-19 Drug Treatment
7.
World J Gastroenterol ; 29(2): 367-377, 2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2201063

ABSTRACT

The pandemics of coronavirus disease 2019 (COVID-19) and non-alcoholic fatty liver disease (NAFLD) coexist. Elevated liver function tests are frequent in COVID-19 and may influence liver damage in NAFLD, while preexisting liver damage from NAFLD may influence the course of COVID-19. However, the prognostic relevance of this interaction, though, is unclear. Obesity is a risk factor for the presence of NAFLD as well as a severe course of COVID-19. Cohort studies reveal conflicting results regarding the influence of NAFLD presence on COVID-19 illness severity. Striking molecular similarities of cytokine pathways in both diseases, including postacute sequelae of COVID-19, suggest common pathways for chronic low-activity inflammation. This review will summarize existing data regarding the interaction of both diseases and discuss possible mechanisms of the influence of one disease on the other.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , COVID-19/complications , COVID-19/metabolism , Risk Factors , Inflammation/metabolism , Obesity/complications , Obesity/epidemiology , Obesity/metabolism , Liver/metabolism
8.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2200323

ABSTRACT

Liver fibrosis, a common liver dysfunction with high morbidity and mortality rates, is the leading cause of cirrhosis and hepatocellular carcinoma, for which there are no effective therapies. Ivermectin is an antiparasitic drug that also has been showing therapeutic actions in many other diseases, including antiviral and anticancer actions, as well as treating metabolic diseases. Herein, we evaluated the function of ivermectin in regulating liver fibrosis. Firstly, carbon tetrachloride (CCl4)-injected Balb/c mice were used to assess the antifibrosis effects of ivermectin in vivo. Further, CFSC, a rat hepatic stellate cell (HSC) line, was used to explore the function of ivermectin in HSC activation in vitro. The in vivo data showed that ivermectin administration alleviated histopathological changes, improved liver function, reduced collagen deposition, and downregulated the expression of profibrotic genes. Mechanistically, the ivermectin treatment inhibited intrahepatic macrophage accumulation and suppressed the production of proinflammatory factors. Importantly, the ivermectin administration significantly decreased the protein levels of α-smooth muscle actin (α-SMA) both in vivo and in vitro, suggesting that the antifibrotic effects of ivermectin are mainly due to the promotion of HSC deactivation. The present study demonstrates that ivermectin may be a potential therapeutic agent for the prevention of hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells , Ivermectin , Mice , Rats , Animals , Ivermectin/pharmacology , Ivermectin/therapeutic use , Hepatic Stellate Cells/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism , Carbon Tetrachloride/toxicity
9.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2010108

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.


Subject(s)
Autophagy , Liver Diseases , Non-alcoholic Fatty Liver Disease , Humans , Liver/metabolism , Liver Diseases/metabolism , Liver Diseases/physiopathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology
10.
Int J Mol Sci ; 23(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1964000

ABSTRACT

Acetaminophen (APAP) is a widely used antipyretic analgesic which can lead to acute liver failure after overdoses. Chronic alcoholic fatty liver disease (AFLD) appears to enhance the risk and severity of APAP-induced liver injury, and the level of angiotensin II (Ang II) increased sharply at the same time. However, the underlying mechanisms remain unclear. Caveolin-1 (CAV1) has been proven to have a protective effect on AFLD. This study aimed to examine whether CAV1 can protect the APAP-induced hepatotoxicity of AFLD by affecting Ang II or its related targets. In vivo, the AFLD model was established according to the chronic-plus-binge ethanol model. Liver injury and hepatic lipid accumulation level were determined. The levels of Angiotensin converting enzyme 2 (ACE2), Ang II, CAV1, and other relevant proteins were evaluated by western blotting. In vitro, L02 cells were treated with alcohol and oleic acid mixture and APAP. CAV1 and ACE2 expression was downregulated in APAP-treated AFLD mice compared to APAP-treated mice. The overexpression of CAV1 in mice and L02 cells alleviated APAP-induced hepatotoxicity in AFLD and downregulated Ang II, p-EGFR/EGFR and P-ERK/ERK expression. Immunofluorescence experiments revealed interactions between CAV1, Ang II, and EGFR. The application of losartan (an Ang II receptor antagonist) and PD98059 (an ERK1/2 inhibitor) alleviated APAP-induced hepatotoxicity in AFLD. In conclusion, our findings verified that CAV1 alleviates APAP-aggravated hepatotoxicity in AFLD by downregulating the Ang II /EGFR/ERK axis, which could be a novel therapeutic target for its prevention or treatment.


Subject(s)
Caveolin 1 , Chemical and Drug Induced Liver Injury , Fatty Liver, Alcoholic , Acetaminophen/adverse effects , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Caveolin 1/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , ErbB Receptors/metabolism , Fatty Liver, Alcoholic/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
Life Sci ; 306: 120812, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1936951

ABSTRACT

AIM: The chronic administration of vitamin C and E can differentially disrupt hepatic insulin molecular pathway in rats. Hence, this study evaluated their effects on lipogenesis in the liver and adipose tissue and investigated the possible involvement of microRNA (miR)-22/29a/27a in the induced impaired glucose tolerance. MAIN METHODS: Wistar rats were orally supplemented with vitamin C (100, 200, and 500 mg/kg) or vitamin E (50, 100, and 200 mg/kg) for eight months. KEY FINDINGS: Vitamin C or E at the highest doses significantly altered liver weight and index, serum and hepatic lipids, adiponectin, and liver enzymes; besides their reported unfavorable effect on glucose homeostasis. Vitamin C and E negatively affected peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), sterol regulatory element-binding protein (SREBP)-1c/-2, miR-22/29a/27a expression, and adipose perilipin 1 to different extents, effects that were supported by the histopathological examination. SIGNIFICANCE: The current study provides a deeper insight into the findings of our previous study and highlights the detrimental effects of chronic vitamins supplementation on lipid metabolism. Overall, these findings emphasize the damage caused by the mindless use of supplements and reinforce the role of strict medical monitoring, particularly during the new COVID-19 era during which numerous commercial supplements are claiming to improve immunity.


Subject(s)
COVID-19 , Diabetes Mellitus , MicroRNAs , Adipose Tissue/metabolism , Animals , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , Ascorbic Acid/pharmacology , Diabetes Mellitus/metabolism , Dietary Supplements/adverse effects , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Vitamin E/administration & dosage , Vitamin E/adverse effects , Vitamins/administration & dosage , Vitamins/adverse effects , Vitamins/pharmacology
12.
Nutrients ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1928617

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease is a chronic disease caused by the accumulation of fat in the liver related to overweight and obesity, insulin resistance, hyperglycemia, and high levels of triglycerides and leads to an increased cardiovascular risk. It is considered a global pandemic, coinciding with the pandemic in 2020 caused by the "coronavirus disease 2019" (COVID-19). Due to COVID-19, the population was placed under lockdown. The aim of our study was to evaluate how these unhealthy lifestyle modifications influenced the appearance of metabolic alterations and the increase in non-alcoholic fatty liver disease. METHODS: A prospective study was carried out on 6236 workers in a Spanish population between March 2019 and March 2021. RESULTS: Differences in the mean values of anthropometric and clinical parameters before and after lockdown were revealed. There was a statistically significant worsening in non-alcoholic fatty liver disease (NAFLD) and in the insulin resistance scales, with increased body weight, BMI, cholesterol levels with higher LDL levels, and glucose and a reduction in HDL levels. CONCLUSIONS: Lockdown caused a worsening of cardiovascular risk factors due to an increase in liver fat estimation scales and an increased risk of presenting with NAFLD and changes in insulin resistance.


Subject(s)
COVID-19 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Adult , COVID-19/epidemiology , Communicable Disease Control , Humans , Liver/metabolism , Longitudinal Studies , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Pandemics , Prospective Studies , Risk Factors
13.
Lancet Diabetes Endocrinol ; 10(4): 284-296, 2022 04.
Article in English | MEDLINE | ID: covidwho-1915200

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has become an epidemic, much like other non-communicable diseases (NCDs), such as cancer, obesity, diabetes, and cardiovascular disease. The pathophysiology of NAFLD, particularly involving insulin resistance and subclinical inflammation, is not only closely linked to that of those NCDs but also to a severe course of the communicable disease COVID-19. Genetics alone cannot explain the large increase in the prevalence of NAFLD during the past 2 decades and the increase that is projected for the next decades. Impairment of glucose and lipid metabolic pathways, which has been propelled by the worldwide increase in the prevalence of obesity and type 2 diabetes, is most likely behind the increase in people with NAFLD. As the prevalence of NAFLD varies among subgroups of patients with diabetes and prediabetes identified by cluster analyses, stratification of people with diabetes and prediabetes by major pathological mechanistic pathways might improve the diagnosis of NAFLD and prediction of its progression. In this Review, we aim to understand how diabetes can affect the development of hepatic steatosis and its progression to advanced liver damage. First, we emphasise the extent to which NAFLD and diabetes jointly occur worldwide. Second, we address the major mechanisms that are involved in the pathogenesis of NAFLD and type 2 diabetes, and we discuss whether these mechanisms place NAFLD in an important position to better understand the pathogenesis of NCDs and communicable diseases, such as COVID-19. Third, we address whether this knowledge can be used for personalised treatment of NAFLD in the future. Finally, we discuss the current treatment strategies for people with type 2 diabetes and their effectiveness in treating the spectrum of hepatic diseases from simple steatosis to non-alcoholic steatohepatitis and hepatic fibrosis.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prediabetic State , COVID-19/complications , COVID-19/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Prediabetic State/metabolism
14.
Front Endocrinol (Lausanne) ; 13: 826772, 2022.
Article in English | MEDLINE | ID: covidwho-1817935

ABSTRACT

Prader-Willi syndrome (PWS) is a genetic disorder caused by the lack of expression of genes on the paternally inherited chromosome region 15q11.2-q13. It is a multisystem disorder that is characterized by severe hypotonia with poor suck and feeding difficulties in early infancy, followed in early childhood by excessive eating and gradual development of morbid obesity. The incidence of type 2 diabetes mellitus is high, particularly in obese patients. Non-alcoholic fatty liver disease has also been reported in some patients with PWS. Liver adenomatosis is a benign vascular lesion of the liver, defined by the presence of >10 adenomas, in the otherwise healthy liver parenchyma. We report the first case of a patient with PWS with severe obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver who also developed liver adenomatosis, review the pediatric literature on liver adenomatosis, and discuss the potential underlying mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Obesity, Morbid , Prader-Willi Syndrome , Child , Child, Preschool , Humans , Liver/metabolism , Muscle Hypotonia , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/metabolism
15.
Mol Biol Rep ; 49(7): 5863-5874, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1772970

ABSTRACT

BACKGROUND: Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS: Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1ß), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS: This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , HMGB1 Protein , Acetaminophen , Animals , Anthraquinones/metabolism , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Antioxidants/metabolism , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , HMGB1 Protein/metabolism , Humans , Liver/metabolism , Male , NF-kappa B/metabolism , PPAR gamma/metabolism , Rats , Toll-Like Receptor 4/genetics
16.
Sci Rep ; 12(1): 5547, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1768849

ABSTRACT

The mechanisms underlying liver disease in patients with COVID-19 are not entirely known. The aim is to investigate, by means of novel statistical techniques, the changes over time in the relationship between inflammation markers and liver damage markers in relation to survival in COVID-19. The study included 221 consecutive patients admitted to the hospital during the first COVID-19 wave in Spain. Generalized additive mixed models were used to investigate the influence of time and inflammation markers on liver damage markers in relation to survival. Joint modeling regression was used to evaluate the temporal correlations between inflammation markers (serum C-reactive protein [CRP], interleukin-6, plasma D-dimer, and blood lymphocyte count) and liver damage markers, after adjusting for age, sex, and therapy. The patients who died showed a significant elevation in serum aspartate transaminase (AST) and alkaline phosphatase levels over time. Conversely, a decrease in serum AST levels was observed in the survivors, who showed a negative correlation between inflammation markers and liver damage markers (CRP with serum AST, alanine transaminase [ALT], and gamma-glutamyl transferase [GGT]; and D-dimer with AST and ALT) after a week of hospitalization. Conversely, most correlations were positive in the patients who died, except lymphocyte count, which was negatively correlated with AST, GGT, and alkaline phosphatase. These correlations were attenuated with age. The patients who died during COVID-19 infection displayed a significant elevation of liver damage markers, which is correlated with inflammation markers over time. These results are consistent with the role of systemic inflammation in liver damage during COVID-19.


Subject(s)
COVID-19 , Liver Diseases , Aspartate Aminotransferases , Biomarkers , COVID-19/complications , Humans , Inflammation/metabolism , Liver/metabolism , Liver Diseases/etiology
17.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: covidwho-1761118

ABSTRACT

The SARS-CoV-2 pandemic continues to rage around the world. At the same time, despite strong public health measures and high vaccination rates in some countries, a post-COVID-19 syndrome has emerged which lacks a clear definition, prevalence, or etiology. However, fatigue, dyspnea, brain fog, and lack of smell and/or taste are often characteristic of patients with this syndrome. These are evident more than a month after infection, and are labeled as Post-Acute Sequelae of CoV-2 (PASC) or commonly referred to as long-COVID. Metabolic dysfunction (i.e., obesity, insulin resistance, and diabetes mellitus) is a predisposing risk factor for severe acute COVID-19, and there is emerging evidence that this factor plus a chronic inflammatory state may predispose to PASC. In this article, we explore the potential pathogenic metabolic mechanisms that could underly both severe acute COVID-19 and PASC, and then consider how these might be targeted for future therapeutic approaches.


Subject(s)
COVID-19/complications , Disease Susceptibility , Energy Metabolism , COVID-19/epidemiology , COVID-19/etiology , COVID-19/metabolism , COVID-19/therapy , Diabetes Mellitus, Type 2 , Disease Management , Glucose/metabolism , Glucose Intolerance , Humans , Insulin Resistance , Islets of Langerhans/metabolism , Liver/metabolism , Metabolic Syndrome/epidemiology , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Risk Assessment , Risk Factors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Post-Acute COVID-19 Syndrome
18.
Diabetologia ; 65(3): 506-517, 2022 03.
Article in English | MEDLINE | ID: covidwho-1610630

ABSTRACT

AIMS/HYPOTHESIS: Lifestyle modification and weight loss are cornerstones of type 2 diabetes management. However, carbohydrate restriction may have weight-independent beneficial effects on glycaemic control. This has been difficult to demonstrate because low-carbohydrate diets readily decrease body weight. We hypothesised that carbohydrate restriction enhances the beneficial metabolic effects of weight loss in type 2 diabetes. METHODS: This open-label, parallel RCT included adults with type 2 diabetes, HbA1c 48-97 mmol/mol (6.5-11%), BMI >25 kg/m2, eGFR >30 ml min-1 [1.73 m]-2 and glucose-lowering therapy restricted to metformin or dipeptidyl peptidase-4 inhibitors. Participants were randomised by a third party and assigned to 6 weeks of energy restriction (all foods were provided) aiming at ~6% weight loss with either a carbohydrate-reduced high-protein diet (CRHP, percentage of total energy intake [E%]: CH30/P30/F40) or a conventional diabetes diet (CD, E%: CH50/P17/F33). Fasting blood samples, continuous glucose monitoring and magnetic resonance spectroscopy were used to assess glycaemic control, lipid metabolism and intrahepatic fat. Change in HbA1c was the primary outcome; changes in circulating and intrahepatic triacylglycerol were secondary outcomes. Data were collected at Copenhagen University Hospital (Bispebjerg and Herlev). RESULTS: Seventy-two adults (CD 36, CRHP 36, all white, 38 male sex) with type 2 diabetes (mean duration 8 years, mean HbA1c 57 mmol/mol [7.4%]) and mean BMI of 33 kg/m2 were enrolled, of which 67 (CD 33, CRHP 34) completed the study. Body weight decreased by 5.8 kg (5.9%) in both groups after 6 weeks. Compared with the CD diet, the CRHP diet further reduced HbA1c (mean [95% CI] -1.9 [-3.5, -0.3] mmol/mol [-0.18 (-0.32, -0.03)%], p = 0.018) and diurnal mean glucose (mean [95% CI] -0.8 [-1.2, -0.4] mmol/l, p < 0.001), stabilised glucose excursions by reducing glucose CV (mean [95% CI] -4.1 [-5.9, -2.2]%, p < 0.001), and augmented the reductions in fasting triacylglycerol concentration (by mean [95% CI] -18 [-29, -6]%, p < 0.01) and liver fat content (by mean [95% CI] -26 [-45, 0]%, p = 0.051). However, pancreatic fat content was decreased to a lesser extent by the CRHP than the CD diet (mean [95% CI] 33 [7, 65]%, p = 0.010). Fasting glucose, insulin, HOMA2-IR and cholesterol concentrations (total, LDL and HDL) were reduced significantly and similarly by both diets. CONCLUSIONS/INTERPRETATION: Moderate carbohydrate restriction for 6 weeks modestly improved glycaemic control, and decreased circulating and intrahepatic triacylglycerol levels beyond the effects of weight loss itself compared with a CD diet in individuals with type 2 diabetes. Concurrent differences in protein and fat intakes, and the quality of dietary macronutrients, may have contributed to these results and should be explored in future studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814694. FUNDING: The study was funded by Arla Foods amba, The Danish Dairy Research Foundation, and Copenhagen University Hospital Bispebjerg Frederiksberg.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 2/therapy , Dietary Carbohydrates , Glycemic Control , Humans , Liver/metabolism , Male , Weight Loss
20.
Nat Metab ; 4(1): 29-43, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612214

ABSTRACT

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Subject(s)
COVID-19/complications , COVID-19/virology , Glucose/metabolism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Membrane Proteins/metabolism , SARS-CoV-2 , Animals , Biomarkers , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat , Disease Models, Animal , Fasting , Gene Expression , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Host-Pathogen Interactions , Humans , Hyperglycemia/blood , Liver/metabolism , Liver/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Organ Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL